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Abstract: Glycogen phosphorylase is an important therapeutic target for the potential treatment of type 2 diabetes. The 
importance of computation in the search for potent, selective and drug-like glycogen phosphorylase inhibitors which may 
eventually lead to antihyperglycemic drugs is now firmly established. Acting solo or more effectively in combination 
with experiment in a multidisciplinary approach to structure based drug design, current day modeling methods are an ef-
fective means of reducing the time and money spent on costly experimental procedures. Glycogen phosphorylase is an al-
losteric protein with five different ligand binding sites, hence offering multiple opportunities for modulation of enzyme 
activity. However, the binding sites have their own individual characteristics, so that different modeling approaches may 
be more effective for each. This review is focused on advances in the modeling and design of new inhibitors of the en-
zyme aimed towards providing the reader with some useful hints towards more successful computer-aided inhibitor (drug) 
design targeting glycogen phosphorylase.  
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SECTION I: INTRODUCTION 

 Type 2 diabetes (T2D), characterised by insulin resis-
tance and/or abnormal insulin secretion, affects approxi-
mately 150 million people worldwide and the prevalence is 
expected to double by the year 2025 [1]. Current treatments 
have several side effects, the potential to cause hypoglyce-
mia and are inadequate for 30-40 % of patients [2, 3]. Insulin 
malfunction in the liver leads to an increase in hepatic glu-
cose production and is the main contributor to high blood 
glucose levels. Glycogenolysis may account for more than 
70 % of the hepatic glucose production, and a substantial 
portion of glucose formed by gluconeogenesis is cycled 
through the glycogen pool [4, 5]. The main regulatory en-
zyme of glycogenolysis is glycogen phosphorylase (GP) 
which catalyses the breakdown of glycogen to glucose-1-
phosphate (Glc-1-P) which is eventually converted to glu-
cose [6, 7]. Inhibition of hepatic GP could suppress glucose 
production arising from both glycogenolysis and glu-
coneogenesis, and hence is a promising therapeutic target for 
the treatment of T2D [8, 9].  

 GP exists as a dimer (EC 2.4.1.1; MW ~ 97500 Da; 842 
residues) and in two interconvertible forms: GPa (phos-
phorylated form, high activity and substrate affinity, pre-
dominantly active R state) and GPb (unphosphorylated form, 
low activity and substrate affinity, predominantly inactive T 
state). The structures of T and R state GP have been charac- 
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terized; X-ray diffraction studies have shown the conforma-
tional changes that take place following activation of the 
muscle enzyme and its conversion from the T to R state by 
phosphorylation or AMP [10-13]. It is a typical allosteric 
enzyme with five different binding sites identified to date: 
the catalytic, inhibitor, allosteric, new allosteric and glyco-
gen storage sites (Fig. (1)). Progress in the prediction and 
design of new GP inhibitors (GPIs) binding at these sites [9, 
14, 15] has been accelerated by the availability of many high 
resolution co-crystallized GP-inhibitor complexes. The 
knowledge of the three-dimensional structures of protein-
ligand complexes reveals the receptor-ligand interactions 
critical to ligand recognition and with that facilitates struc-
ture-based drug design (SBDD). Computation provides an 
efficient tool towards exploiting the known structural data in 
the design and proposal of new inhibitors for experimental 
evaluation. Two recent review articles have focused on the 
experimental aspects of the design of new GPIs [14, 15], one 
of them also containing a review of the related computa-
tional work [14]. A general review of modeling studies on 
different targets for T2D has also been published [16]. This 
review focuses on GP and inhibitor design from a modeling 
perspective, highlighting based on recent computational 
work how calculations can support experiment in a more 
rational and time-efficient approach to design of potent, 
drug-like GPIs. Section II highlights important information 
regarding the binding features at each site; section III analy-
ses the computational methods which can be applied to 
model inhibitor binding properties versus their computa-
tional expense; section IV reviews previous modeling studies 
on GPIs exploiting these methods; while section V examines 
in silico approaches to the design of more drug-like GPIs.  
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SECTION II: TARGETING GP BINDING SITES 

 Critical to effective structure based drug (inhibitor) de-
sign of GPIs targeting the different binding sites is knowl-
edge of the binding site features such as key binding site 
residues, site flexibility, solvent exposure and hydrophobic-
ity. 

Catalytic Site 

 The GP catalytic site includes the essential cofactor pyri-
doxal-5'-phosphate (PLP) and is buried at the center of the 
GP monomer subunit accessible to bulk solvent through a 15 
Å long channel. Catalytic site GPIs promote the T state (less 
active) conformation through stabilisation of the closed posi-
tion of 280s (residues 282-287) loop and block access of the 
substrate glycogen to the catalytic site. -D-glucose (1) is the 
physiological inhibitor of the GP catalytic site with a Ki of 
1.7 mM for RMGPb inhibition; -D-glucose (2) binds with a 
Ki of 7.4 mM [17]. Design of inhibitors for this site have 
therefore initially focused on glucose based analogues (3) 
with - and -substitutions at the anomeric C1 atom, with the 

-substitutions aiming to exploit the catalytic subsite called 
-cavity, an empty space at the -1-C configuration lined by 

both polar and non-polar groups. Given the location of the 
catalytic site, the GP monomer structure is sufficient for 
modeling GPI binding at this site. The glucopyranosylidene-
spiro-isoxazoline (4(R=naphthyl)) shown bound at the cata-
lytic site of GPb (PDB code 2QRP; Fig. (2)) is one of the 
most potent GPIs identified at this site to date with a Ki for 
RMGPb inhibition of 630 nM [18]. An interaction that is 
often pursued in catalytic site GPI design is a hydrogen bond 
from inhibitor to the main chain O of His377. For example, 
N-Acetyl- -D-glucopyranosylamine (NAG (5)) which forms 
a hydrogen bond from NH of the ligand to His 377 O inhibits 
RMGPb with a Ki of 32 M [19], approximately 50 times 
better than -D-glucose (1) and binds to the enzyme without 
any significant structural conformational changes within the 
catalytic site; residues of the 280s loop are stabilized in the 
same conformation observed in the RMGPb – -D-glucose 
complex.  

 Some ligands (e.g. N-acyl-N'- -D-glucopyranosyl ureas 
ligands) (6) [14, 20] upon binding to the catalytic site induce 
(varying) shifts of the 280s loop at the catalytic site. Depend-
ing on the degree of shift involved, this may require consid-
eration in modeling studies (vide infra). Two different 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A schematic diagram of the muscle GPb dimeric molecule viewed down the 2-fold. The positions of the catalytic, allosteric, inhibi-
tor, glycogen storage and new allosteric sites are shown. The catalytic site, which includes the essential cofactor pyridoxal 5’-phosphate 
(PLP, not shown), is buried at the centre of the subunit accessible to the bulk solvent through a 15 Å long channel. Glucose (shown in pur-
ple), a competitive inhibitor of the enzyme that promotes the less active T state through stabilization of the closed position of the 280s loop 
(shown in white), binds at this site. The allosteric site, which binds the activator AMP, other phosphorylated compounds such as ATP, glu-
cose-6-P, and the Bayer compound W1807 (shown in magenta), is situated at the subunit-subunit interface some 30 Å from the catalytic site. 
The inhibitor site, which binds purine compounds, such as caffeine, nucleosides or nucleotides at high concentrations, and flavopiridol 
(shown in red) is located on the surface of the enzyme some 12 Å from the catalytic site and, in the T state, obstructs the entrance to the cata-
lytic site tunnel. The new allosteric inhibitor site, located inside the central cavity formed on association of the two subunits, binds CP320626 
(shown in orange) and is some 15 Å from the allosteric effector site, 33 Å from the catalytic site and 37 Å from the inhibitor site. The glyco-
gen storage site is indicated by maltoheptaose (shown in yellow). 
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Fig. (2). The glucopyranosylidene-spiro-isoxazoline derivative 4 (R=naphthyl) shown bound at the catalytic site of GPb (PDB code 2QRP) 
[18], blocking access of the substrate (glycogen) to the site. The inhibitor on binding stabilizes the T state of the enzyme with the 280s loop in 
the closed position. A large number of residues can contribute to binding at this site, as indicated, with the -channel lined by both polar and 
non-polar groups. Inhibitor dependent structural rearrangements at the site (as outlined in the text) are often required to accomodate inhibitors 
(most frequently in 280s loop), as are water-bridging interactions [14]. All such interactions accumulate to define the overall binding affinity 
of a GPI. 

conformations of Asn284 [21], the position of phosphate 
group of PLP [21], conformation of the Asp283 sidechain 
carboxylate [21, 22], and even orientations of Ser674 [21] 
and His377 backbones [21, 23] are dependant on the struc-
ture of bound inhibitor. These and other importance shifts in 
the Ala673-Thr676 sequence, 280s and 380s (residues 377-
384) loops are also highlighted in reference [24]. 

Allosteric Site 

 The allosteric (AMP binding) site is situated at the 
subunit – subunit interface approximately 30 Å from the 
catalytic site and is partially exposed to the solvent. This site 
recognizes a variety of phosphorylated compounds such as 
IMP (weak activator), ATP, glucose-6-P (Glc-6-P), NADH, 
UDP-glucose, 2-deoxy-glucose-6-P, -glycerophosphate, 
and inorganic phosphate [8]. It also binds allosteric inhibi-
tors such as the Bayer compound W1807 (7) [25], acyl ureas 
(e.g. 8a-8c [26]), triterpenes (e.g. maslinic 9 and asiatic acid 
10 [27]) and the GlaxoSmithKline series of anthranilimide 
GPIs (e.g.: 11 and 12 [28]). Features for binding of W1807 
(PDB code 3AMV) at the site are shown in Fig. (3). The 
inhibitors at the site work by either direct inhibition of AMP 
binding and/or indirect inhibition of substrate binding 
through stabilization of the T- or T'-state conformation, with 
the superscript prime referring to the symmetry related 
monomer subunit. Allosteric activators, such as AMP or 
allosteric inhibitors such as ATP and Glc-6-P, can alter the 
equilibrium between a less active T state and a more active R 

state or vice versa, according to the Monod-Wyman-
Changeux model for allosteric proteins [29].  

 W1807 is the most potent inhibitor of GP known to date 
(Ki =1.6 nM for GPb and Ki =10.8 nM for GPa) and acts in 
synergy with both glucose and caffeine. It exhibits blood 
glucose lowering effects in rats [30] and reduces glyco-
genolysis both by inactivation and by inhibition of residual 
GPa [31]. The interactions between W1807 and RMGPa are 
dominated by charge-charge interactions between the car-
boxylate groups and the arginine residues, and by three ma-
jor groups of non-polar contacts (Fig. (3)). Binding of 
W1807 in the T-state GPb crystals is accompanied by sub-
stantial conformational changes. Residues 43  to 49  move 
closer to the other subunit and tighten the W1807 site, while 
residues 192 to 196 shift to contribute (through Phe196) van 
der Waals interactions. These shifts appear important in sta-
bilizing the T state. The shifts in the region of 43  to 49  and 
192 to 196 affect residues remote from the allosteric site 
(such as Pro194), which in turn affect the subunit/subunit 
interface packing [32]. The enzyme shows a small rotation 
(1.6°) and this rotation bringing the two subunits of the di-
mer closer together. The conformational changes induced on 
binding W1807 are almost identical to those that accompany 
the binding of the Glc-6-P. Glc-6-P binds at the allosteric 
site and promotes conformational changes in the T-state GPb 
[33]. However, there are significant differences in the type of 
contacts made by Glc-6-P and W1807 at the allosteric site. 
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Contacts from Glc-6-P to the enzyme are mostly hydrogen-
bonding interactions and there are relatively few van der 
Waals interactions. In contrast, the contacts from W1807 to 
GPb are dominated by the non-polar van der Waals interac-
tions and by ionic interactions to arginine residues. The non-
polar contacts appear to be the major source of binding en-
ergy that results in an inhibitor with nM affinity compared 
with the μM affinity exhibited by Glc-6-P.  

 For binding of GlaxoSmithKline compound 11, the naph-
thalene group binds in a narrow lipophilic channel close to 
the solvent exposure [28]. Inhibitor dependent conforma-
tional changes have also been observed; for binding of 11, 
Arg193 adopts a conformation suitable for -stacking inter-
actions [28] which is different to that observed for other al-
losteric site GPIs [26, 34]. It has also been reported that 
Arg309 adopts a conformation that is flipped away from the 
binding site and does not engage in hydrogen bond interac-
tions [28, 34]. Such input from the available structural data is 
crucial to modeling more accurately the binding of new in-
hibitors. The different binding modes and contacts observed 
reveals a remarkable degree of versatility for the allosteric 
site, which is able to recognize specifically dissimilar com-
pounds by employing the same residues. 

Inhibitor Site 

 The inhibitor or caffeine (13) binding site binds fla-
vopiridol (14) [35] (analogue complex shown in Fig. (4)) 
with a Ki of 1.16 M for RMGPb inhibition [14]. Caffeine 

was found to bind with Ki’s of 0.1 mM [36] and 0.08 mM 
[37] for RMGPa and RMGPb, respectively. The site is lo-
cated on the surface of the enzyme at the entrance to the 
catalytic site (approximately 12 Å from it). In the T state, the 
phenyl ring of Phe285 (part of the 280s loop) is stacked 
close to that of Tyr613 and these two aromatic residues form 
the core of the inhibitor site. Inhibitor site GPIs work by sta-
bilizing the T-state of the enzyme and blocking access of the 
glycogen substrate to the catalytic site. Binding at this site 
shows great diversity. Purines (e.g. adenine and caffeine), 
nucleosides (e.g. adenosine and inosine), nucleotides (e.g. 
AMP, IMP and ATP), NADH and certain related heterocyc-
lic compounds such as FMN (flavin mono-nucleotide), FAD 
(flavin-adenine dinucleotide), and riboflavin have been 
shown to bind at this site in muscle GPb and GPa, but liver 
GPa shows a more stringent selectivity for inhibitors [8]. The 
interactions at this site are mainly hydrophobic with good 
inhibitor site GPIs having aromatic rings which can ( - ) 
stack between the side chains of Tyr613 and Phe285 forming 
sandwich type complexes; the type of inhibitors studied can 
be sourced in recent reviews [14, 15]. Inhibition at the in-
hibitor site is generally synergistic with glucose.  

New Allosteric Site 

 The new allosteric or dimer interface (indole) binding 
site binds compound CP320626 (15) (PDB codes 1C50 [38]; 
1H5U [39]; 1LWO [40]) and is located inside the central 
cavity formed on association of the two GP monomer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The Bayer compound W1807 (7) bound at the allosteric site (PDB code 3AMV). The carboxylate oxygens of W1807 exploit the 
allosteric effector phosphate-recognition subsite which is composed of three arginine residues: Arg242, Arg309 and Arg310. The chlorine 
atom of the chlorophenyl group is buried in a pocket where it makes several van der Waals interactions to Arg193 and to Asp227. The chlo-
rine appears to assist binding by filling this pocket on the protein surface. The chlorophenyl group is situated between the aromatic sidechain 
of Phe196 and the sidechain of Val45' with the two phenyl rings inclined approximately 40o. Several contacts are made from all atoms of the 
chlorophenyl ring to the edge of Phe196 (CE1 and CZ atoms), representing interactions from the -  electron cloud of the chlorophenyl ring 
to the + hydrogen atoms on the Phe196. The ethyl group of W1807 (C1H and C1M) stacks against Tyr75 making some seven van der Waals 
contacts. The isopropyl group (C2H, C2M and C3M) contacts Trp67, Ile68 and the aliphatic part of Arg193. The high affinity of W1807 for 
GPb appears to arise from numerous non-polar interactions made between the ligand and the enzyme, especially those between CH groups 
and  electron orbitals of aromatic rings. 
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Fig. (4). Binding of a flavopiridol analogue at the inhibitor site [14]. The hydrogen bonding patterns between the ligand, protein residues and 
water molecules (shown as black spheres) are shown as dotted lines. The location of the catalytic site is indicated by the glucose (Glc) mole-
cule. Although the hydrophobic sandwich stacking interactions of the molecule between residue Phe285 from 280s loop and Tyr613 from 19 
helix (residues 613-631) forms the core of the receptor-ligand contacts, there are also a number of water-mediated hydrogen bonding interac-
tions contributing to the GPI binding affinity. The affinities are higher in the presence of high glucose concentrations [14].  

subunits (dimer interface). The binding of CP320626 from 
PDB code 1C50 to MGPb is shown in Fig. (5), highlighting 
the important residues. The central cavity is located about 15 
Å from the allosteric site, 33 Å from the catalytic site and 37 
Å from the inhibitor site. Inhibitors binding at this site stabi-
lize the T-state conformation of the enzyme and hence in-
hibit GPb by locking the enzyme in an inactive state. The 
site, being solvent exposed, has a number of waters bridging 
receptor-ligand contacts. The structure of the GPb-
CP320626 complex [38, 39] revealed specific chacteristics 
of this site. Inhibitor binding occurs with only small distor-
tions of the structure, and with the displacement of nine wa-
ter molecules. The increase in entropy from the release of 
these waters, together with the van der Waals, CH/ , halo-
gen/polar, and the specific polar/polar interactions appear to 
be the major source of binding energy that support inhibitor 
binding. Although solvent exposed, hydrophobic pockets 
such as those formed by lipophilic side chains of amino acids 
including Leu63, Val64 and Trp67 can contribute to binding 
[41]. Hydrophilic and hydrophobic interactions stabilize the 
less active T state of the enzyme, however, one computa-
tional study of indole-2-carboxamide inhibitors estimated 
that the hydrophobic contribution to binding was close to 
95% (vide infra, Section IV) [42].  

Glycogen Storage Site 

 The glycogen storage site is on the surface of the mole-
cule approximately 30 Å from the catalytic site, and 40 Å 
and 50 Å from the allosteric and new allosteric site, respec-
tively. This binding site of GP has received little attention as 
a possible target in modifying activity of GP and there are no 
reported computational studies. However, binding of -, -, 
and -cyclodextrins (CD, cyclooligosaccharides of glycosi-

dically -1,4-linked 6, 7, or 8 D-glucopyranosyl units, re-
spectively) have been studied kinetically and by protein crys-
tallography with mM inhibition of RMGPb obtained [43].  

Predicting a GPI Binding Site 

 X-ray structure determination of inhibitor bound GP 
complexes is very demanding, while competitive binding 
studies may not be suitable to identify the binding sites for 
some GPIs [44, 45]. Modeling calculations, therefore, pro-
vide  an alternative but it is important sometimes to be cau-
tious with respect to the predicted mode and action of new 
GPIs. In one study, docking lead the authors to suggest that 
the triterpene class of GPIs may bind at the inhibitor site 
[46], however, subsequent protein crystallography of the 
RMGPb–maslinic (9) (PDB ID: 2QN2) and RMGPb-asiatic 
(10) (PDB ID: 2QN1) complexes revealed the inhibitors bind 
at the AMP allosteric site [27]. On the other hand, using the 
3D similarity/ superposition tool SQ [47], the binding site of 
the phenyl diacid compound 16 was predicted as the allos-
teric site [45] and subsequently confirmed by crystallogra-
phy [48]. Meanwhile, studies of benzamide derivatives such 
as 17 (IC50 of 2.68 M for RMGPa inhibition) suggested 
based on the mapping (using Catalyst 4.10 [49]) between 
pharmacophores for the different GP binding sites and con-
formers of the benzamide derivatives, that the inhibitors 
‘likely’ bind at the new allosteric site [44]. The pharma-
cophore models for the four different binding sites (catalytic, 
inhibitor, allosteric and new allosteric) were created using 
LigandScout [50] and several protein-ligand PDB com-
plexes. Receptor-ligand (complex) structure-based pharma-
cophores should be more reliable compared to those from 3D 
similarity. Glide-XP docking calculations have also recently 
been used to predict the binding site (allosteric site) of a se-
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ries of glucoconjugates of oleanic acid GPIs [51] (vide infra, 
Section IV), with experimental validation awaited. 

 In some instances GPIs may bind at two different binding 
sites; for example, indirubin-3'-aminooxy-acetate (E243 
(18)) is a low M range GP inhibitor and occupies the in-
hibitor site, but also binds two molecules at/near the allos-
teric site [52]. One E243 molecule binds at the allosteric site, 
while the second is bound at a subsite in the vicinity of the 
allosteric site. FR258900 (19) inhibits HLGPa with an IC50 
value of 2.5 M [53]. The crystal structure of the RMGPb-19 
complex was determined and revealed binding at the AMP 
allosteric site (Ki = 0.46 M for RMGPb inhibition) although 
19 has no structural similarity to either of the natural allos-
teric regulators, activator AMP and inhibitor Glc-6-P [54]. In 
the case of the new allosteric site, it is expected that two GPI 
molecules bind together and hence interact not only with GP, 
but with each other to varying degrees. Birch and co-workers 
[55] revealed by crystallography (PDB IDs: 2IEG and 2IEI) 
that two inhibitor molecules of 20a (GPa IC50 = 135 nM) and 
20b (GPa IC50 = 121 nM) bind at the dimer interface (new 
allosteric) site; the two ligands of 20a adopt different orien-
tations and in the case of 20b there are hydrogen bond con-
tacts between the two ligands, suggestive of cooperativity. 
Even for glucose analogue inhibitors binding at the catalytic 
site, it is possible that the GPIs may bind at a second site. 
For example, the benzoyl-urea derivative 6 (R = phenyl) also 
binds at the new allosteric site [20], while the glucopyrano-
sylidene-spiro-isoxaxoline 4 (R = phenyl, X = NO2) binds at 

the inhibitor site [18]. However, in both cases the binding at 
the second site is significantly weaker. 

 The latter examples are an indication of the potential dif-
ficulties encountered when predicting both GPI binding sites 
and the receptor-ligands interactions. There are also a num-
ber of GPIs with un-determined binding sites [14]. 

Choosing a GP Receptor Model 

 HLGPa is the more important target enzyme in terms of 
treatment of type 2 diabetes because of its direct influence on 
blood sugar levels. The HLGPa polypeptide chain is 846 
residues long, compared with 841 and 842 residues for hu-
man muscle and rabbit muscle GPb, respectively. The mus-
cle and liver enzymes are 79% identical with 100% identity 
at the glucose binding site (catalytic site), but the two isoen-
zymes differ in allosteric properties [56-58]. The vast major-
ity of allosteric site GPIs are studied targetting GPa for this 
reason. The new allosteric sites in RMGP and HLGP are 
highly conserved; the only difference that Ala192 in RMGP 
is a serine in the HLGP isoenzyme. Comparison of the crys-
tal structures of T-state HLGPa in complex with CP403700 
(21) (or CP526423) and 1-GlcNAc [59] with their respective 
complexes with RMGPa revealed that the structures super-
impose well and that they closely resemble eachother in the 
vicinity of the new allosteric site [8].  

 The facilitation of the growth of muscle GPb crystals 
from rabbit has lead to the deposition of a large number 
(more than 120) of co-crystallized RMGPb-GPI complex 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (5). The binding of CP320626 (15) at the new allosteric site. The site is formed when the two subunits (related by a crystallographic 2-
fold symmetry axis) of the functionally active dimer associate. The site encompasses a solvent filled cavity surrounded on each side by resi-
dues from the N-terminal domains of both subunits. The cavity is about 30 Å long and the radius varies from a maximum of ~8 Å to a mini-
mum of ~4 Å and occupies a volume of about 1300 Å3 in the T-state GPb. The cavity is closed at one end by residues from the cap and a2 
helices (Arg33, His34, Arg60 and Asp61 and their symmetry-related residues) and at the other end by the tower helices (residues Asn270, 
Glu273, Ser276 and their symmetry-related residues). In the 2.0 Å resolution 100K native T-state GPb structure (PDB code 2GPN), the cav-
ity contains 60 located water molecules (30 waters and their symmetry-related equivalents). These waters have a few contacts with the pro-
tein and only 4 out of the 30 make more than one hydrogen bond to protein atoms. 
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structures (GPIs bound at the different sites) to the RCSB 
Protein Data Bank. This rather large number of crystal struc-
tures facilitates the SBDD approach. There are also a number 
of inhibitor complexes co-crystallised with GPa. Examples 
would be: for the catalytic site, there is the RMGPa – -D-
glucose (1) complex (PDB code 2GPA [25]); for the allos-
teric site, the RMGPa-glucose-W1807 (7) [PDB code 3AMV 
[25]] and RMGPa-caffeine (13)-W1807(7) complexes (PDB 
code 1C8L [60]), the HLGPa – -D-glucose – 8b complex 
(PDB code 2ATI [26]) and the series of GlaxoSmithKline 
anthranilimide based GPIs complexed with HLGPa – caf-
feine (PDBs codes 3DD1, 3DDS, 3DDW [28]); for the in-
hibitor site the caffeine (13) complexes just mentioned (PDB 
codes 1C8L [60] and 3DD1, 3DDS, 3DDW [28]) and the 
crystal structures of uric acid, caffeine and riboflavin in 
complex with HLGPa [61]; and for the new allosteric site, 
HLGPa with bound 22 and -D-glucose (PDB code 2ZB2 
[41]) , CP30626 (15) and CP403700 (21) with RMGPa – -
D-glucose and HLGPa – 1-GlcNAc, respectively (PDB 
codes 1LWO [40] and 1EXV [59], respectively).  

 In choosing a model PDB complex for calculations, the 
choice is influenced by such factors as those outlined above; 
the binding site(s) of the co-crystallized ligand(s); and the 
similarity of the co-crystallized ligand to new inhibitors be-
ing modeled. There are some differences in inhibition con-
stants of GPIs for the different GP isoforms, but not signifi-
cant differences [14].  

SECTION III: COMPUTATIONAL METHODS VER-

SUS EXPENSE 

 Molecular Dynamics Free Energy (MDFE) calculations 
[62] in the form of free energy perturbation (FEP) MD simu-
lations modelled accurately and explained the observed bind-
ing affinity differences [63] for a set of closely related glu-
copyranosylidene-spiro-hydantoin derivatives (23) binding at 
the GPb catalytic site. MDFE calculations represent the en-
tire, or part of the biomolecular system and surrounding sol-
vent in atomic detail, and provide the most accurate compu-
tational method for the evaluation of relative binding affini-
ties of different ligands to a protein [64]. Accuracy of predic-
tions is the holy grail in the design of new GPIs, but MDFE 
calculations are highly expensive and only viable for com-
paring potencies of no more than a few similar type GPI de-
rivatives.  

 Whereas virtual screening has mainly been used in the 
“lead identification/discovery” [65] (a lead generally consid-
ered to bind on the (low) M range), some docking methods 
can now also be used to improve potency in the “lead opti-
mization” phase [66]. Very recently, Glide [67-69] docking 
calculations in extra-precision (XP) mode and in quantum-
mechanics polarised ligand docking (QPLD) [67] were able 
to correctly rank the potencies of a set of glucose-based 
spiro-isoazolines (4) over a very short pKi (2.2 log units) 
range [18]. In the QPLD calculations, the top-ranked ligand 
poses from initial Glide-XP calculations were reassigned 
ligand atomic partial charges by fitting to electrostatic poten-
tials (ESPs) generated from single point energy (SPE) calcu-
lations on the ligand poses, either in the free state (no recep-
tor) using QM or in the ‘field’ of the receptor using 
QM/MM. The ligands with the new partial charges were then 

redocked using Glide-XP. QPLD with the ligand charges 
calculated in the “field” of the receptor accounting for recep-
tor-ligand charge polarization effects yielded the best results 
with a correlation (R2) of 0.958 between docking GlideS-
cores and experimental binding free energies (BFEs). Al-
though the set of ligands studied was small (five GPIs) and 
contained similar type derivatives, the relative binding affini-
ties of the set was reproduced with good accuracy and con-
siderable less computational effort compared to full-scale 
MDFE simulations. It should be noted, however, that the 
accuracy of Glide and QPLD for ranking larger and more 
diverse sets of catalytic site GPIs has yet to be determined, 
especially if they induce varying conformational shifts in the 
vicinity of the site (e.g. 280s loop).  

 Docking algorithms are in continuous development and 
there are many articles reviewing their status, performance 
and future challenges [70-73]. Among the most popular 
docking programs are Glide [67-69], FlexX [74, 75], GOLD 
[76, 77], AutoDock [78-80] and DOCK [81]. One of the 
limitations of standard docking programs is the rigid receptor 
approximation used, and while receptor flexibility in docking 
calculations remains a challenge [82], a number of current 
docking algorithms now allow for at least some receptor 
flexibility in calculations (e.g. FlexX [75], GOLD [76],  
AutoDock [80]). The induced-fit docking (IFD) algorithm of 
Schrödinger [67, 83] allows one to refine receptor residues 
(using the program Prime [67]) surrounding an initial set of 
Glide docked ligand poses before redocking of ligands to the 
new receptor conformations. While this should in theory lead 
to more accurate geometries, the effect on the ranking of GPI 
potencies is uncertain, as is alternatively rescoring docking 
poses using, for example, the MM-GBSA (or MM-PBSA) 
methods which include receptor flexibility and implicit sol-
vation effects [84-86]. The quality of results is quite possibly 
dependent on the GP binding site and its characteristics. In 
this regard, it has also been reported that energy minimiza-
tion of docked poses can significantly improve rank-
ing/enrichments in systems with sterically demanding bind-
ing sites [72], while Huang and co-workers have presented a 
very good overview of the use of different MM methods for 
ranking ligand binding affinities [87]. Meanwhile, the linear 
interaction energy (LIE) or linear response methods (LRM) 
for binding affinity predictions are “semi-empirical” ap-
proaches [88-90] retaining some of the theoretical aspects of 
FEP but including parameters derived from experimental 
data, hence are computationally faster but have less accuracy 
than FEP. Their application to GPI binding studies in the 
future would be interesting.  

 Computationally expensive QM and hybrid QM/MM 
calculations are becoming increasingly more important in 
SBDD applications, fueled by greater computational power 
and the development of more efficient algorithms for calcu-
lating wavefunctions of macromolecular systems [91, 92]. 
Important properties such as ESP maps for characterizing 
binding sites, protonation states (both ligand and residue), 
and polarization and charge transfer effects can be calcu-
lated. QM/MM type docking with QPLD was successfully 
applied to study binding of the spiro-isoazolines derivatives 
(4) to GP as outlined above [18], and QM-derived charges 
have also been shown to more accurately model binding in 
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other protein-ligand complexes [93, 94]. The ZINC database 
of commercially available drug-like molecules has been pre-
pared with (semiempirical) QM charges and desolvation 
penalties [95]. QM/MM methods are now beginning to be 
used to help predict ligand binding affinities [96-99], and 
this may have applications in ranking GPIs binding at, for 
example, the inhibitor site where standard docking methods 
may fail (vide infra, Section IV). Already QM/MM has been 
applied to distinguish favored tautomeric forms of ligands 
binding at the GP catalytic site [22]. High level QM calcula-
tions also allow accurate enumeration of important unbound 
ligand properties, such as the relative energies of tautomeric 
forms of inhibitors that have the potential to bind to GP [22, 
23]. Accurate pKa calculations of ligand ionization states are 
also now possible [23], using programs such as the Jaguar 
QM program with empirical corrections [67].  

 Computationally inexpensive QSAR methods have been 
widely used to model GPIs, where the QSAR models pro-
vide a mathematical relationship between the biological ac-
tivity of a molecular system and its geometric and chemical 
characteristics. Widely use three dimensional (3D)-QSAR 
methods such as CoMFA [100] have been used to model 
ligand activity, as well as the more accurate receptor de-
pendent (RD-)4D-QSAR method [21], which incorporates 
receptor effects into the QSAR models. Much of the QSAR 
work we have reviewed previously [14] but will be recapped 
in part together with the more recent work (vide infra). Ex-
amples of the use of pharmacophore modeling in GPI studies 
have already been given in Section II. Using this method, the 
inhibitor pharmacophore represents the ensemble of steric 
and electronic features necessary to optimize inhibitor-
receptor interactions [101]. General features such as hydro-
gen bond donors, hydrogen bond acceptors, + and – charged 
groups, and hydrophobic regions are used, with the other key 
component the incorporation of the three dimensional nature 
of interactions into the (3D-)pharmacophore. Some pharma-
cophore methods use 3D-QSAR to refine their models or the 
two techniques are closely integrated [101]. Using an en-
semble of methods with different degrees of computational 
expense/accuracy can also be considered. Following an ini-
tial comparison of binding affinity prediction methods for a 
set of 30 catalytic site GPIs [102], So and Karplus [103] used 
a multiple screening/layer approach to designing GPIs with 
the accuracy of each method (but also computational cost 
involved) increasing at each stage in the process. A prelimi-
nary filter using LUDI’s [104-106] empirical scoring func-
tion was followed by a consensus ‘activity prediction’ stage 
using five QSAR based predictors (HQSAR [107], C2GNN 
[108, 109], CoMFA [100], SMGNN [110, 111], RSM [112, 
113]). The final ‘validation layer’ (a structure-based predic-
tion SBEP stage [102]) involved predictions based on an 
atomic forcefield and electrostatic calculations for the pro-
tein-ligand complexes.  

 To summarize, MDFE methods (FEP or thermodynamic 
integration) remain the most accurate for calculating (rela-
tive) binding affinities of similar GPIs [114]. Other methods 
described such as docking and QSAR are less accurate but 
have been efficiently applied to GPI studies. They can be 
used to quickly screen large sets of ligands compared to days 
to weeks (depending on computational resources/system set-

ups) for a select few similar ligand derivatives using MDFE. 
However, should the synthetic route to a predicted inhibitor 
be very demanding [14], MDFE calculations may still be 
worthwhile to validate and strengthen predictions from lower 
level calculations. With computational capabilities con-
stantly improving, and more efficient MDFE algorithms be-
ing developed such as the FEP/MD algorithms employed by 
the new Desmond program [115, 116], these calculations are 
becoming more accessible than in previous years.  

SECTION IV: APPLICATION OF MODELING 

METHODS TO DIFFERENT GP BINDING SITES 

 Analysis of previous work can lead to vital clues in de-
signing new modeling experiments. In this section a recap of 
the previously reported computational work [14] is inte-
grated together with the newer work, so as to highlight the 
benefits of application of modeling methods to GPI design, 
often most profitable in combination with experiment. 

Catalytic Site 

 As already mentioned, MDFE simulations [62] were used 
to calculate the relative binding affinities for GP of three 
glucopyranosylidene-spiro-hydantoin derivatives (23) in 
good agreement with experiment. Of further interest here is 
that a comparison of the interaction energies between a set of 
ligands and their surrounding groups in X-ray structures is 
often used in the interpretation of binding free energy differ-
ences and in guiding the design of new ligands. However, for 
the systems in this work such an approach failed to estimate 
the order of relative binding strengths. In contrast, a free-
energy decomposition analysis showed that the replacement 
of a hydrogen by a methyl- or amino group reduced the bind-
ing affinity, due to steric interference with proximal protein 
groups and water molecules. The computed binding free 
energies were sensitive to the preference of a specific water 
molecule for two well-defined positions in the catalytic site.  

 The performance of Glide 4.0 [67-69] and GOLD 3.1.1 
[76, 77] programs have been compared for modeling features 
of the binding of glucose analogue N-( -D-glucopyranosyl)-
(4-phenyl-1,2,3-triazol-1-yl) acetamide (DL8 (24)) at the 
catalytic site [117]. One of the attributes of GOLD docking 
is that it includes some receptor flexibility by allowing tor-
sion angles of hydroxyl group residues (Ser, Thr and Tyr) 
and Lys NH3

+ groups to be flexible so as to optimize hydro-
gen bonds; also, orientations of retained crystallographic 
waters can be sampled in the binding site and waters toggled 
on/off if obstructing ligand binding poses/conformations. 
Glide, meanwhile, uses a crude but effective explicit water 
model for modeling solvation effects with the pseudo-
explicit water molecules placed after the initial docking. 
Both docking programs were able to very accurately redock 
24 to its native protein structure receptor conformation (PDB 
code 2PYI), with the retention of the crystallographic waters 
not important. However, MD simulations for the binding of 
24 with a flexible GP catalytic site, crystallographic waters 
deleted and the Generalized Born/Surface Area (GB/SA) 
[118] continuum model to describe bulk solvation effects 
lead to different binding modes compared to that seen in the 
crystal structure. It was necessary to retain the ordered crys-
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tallographic cavity waters to model local solvation (miscro-
solvation) effects in combination with the GB/SA continuum 
model for bulk solvation effects to obtain the correct binding 
geometry.  

 The accuracy of QPLD for ranking the catalytic site GPI 
set 4 has already been discussed [18]. Further, in the same 
work it was shown that applying docking constraints on the 
well-defined positions of the glucose moeities of the ligands 
improved results with respect to reproducing crystallo-
graphic ligand binding conformations and ranking of the 
binding affinities.  

 A very recent study [23] of -D-glucopyranosyl 
pyrimidine derivatives revealed the importance of considera-
tion of tautomeric forms of the ligands in the GPb binding 
studies; in the case of 25 (Ki of 7.7 M for GPb inhibition), 
for example, two competitive binding (tautomeric) forms 
25a and 25b are revealed using Glide 5.0 [67-69] (and 
QPLD) [67] docking calculations. Jaguar 7.5 [67] pKa calcu-
lations also revealed the potential of some inhibitors to bind 
in different ionization states. QM calculations were per-
formed to identify the low energy tautomers of the ligands.  

 Catalytic site GPI design has focussed on glucose ana-
logues (3) with  and  substitutions at the C1 position. In a 
follow-up study [22] of the binding features for another set 
of -D-glucopyranosyl pyrimidine derivatives but with a 
flourine instead of a hydroxyl at the 3’ position of the glu-
cose moeity, Glide 5.0 [67-69] docking and QSite [67] 
QM/MM calculations also revealed the potential of the GPIs 
to bind in different tautomeric forms. Preferred binding of 
compound 26 through 26b and 27 through 27a was consis-
tent with the Asp283 side chain carboxylate pointing towards 
and away from the ligands in the GPb-26 and GPb-27 crystal 
structures, respectively. The best inhibitor of the set (26) had 
a Ki of 46 M for GPb inhibition, with the -F substitution not 
improving potencies over the native glucose -OH. Using 
further Glide and QPLD [67] calculations, a series of other 
substitutions at the 3’ equatorial position were explored, but 
none of the substitutions were predicted to outperform –OH 
which acts as both a hydrogen bond donor and acceptor at 
this position.  

 In these studies for the binding of ligands in different 
tautomeric forms at the GP catalytic site [22, 23], results 
were influenced by the (rigid) receptor conformation used, 
the tautomers having different hydrogen bond do-
nor/acceptor structural properties due to the local hydrogen 
migration. The importance of consideration of ligand 
tautomerism in computer-aided drug design has been high-
lighted before but this area had not yet received adequate 
attention [119-123]. 

 Meanwhile, a number of 3D- and 4D-QSAR models [21, 
24, 124-127] have been applied to model binding of sets of 
catalytic site inhibitors, reported in our previous review [14]. 
It should be reiterated that the merits of consideration of re-
ceptor-ligand induced fit effects involving catalytic site resi-
due conformational changes have been highlighted [21, 24]. 
A new method called receptor dependent (RD-)4D-QSAR 
was developed and found to be more effective than receptor 
independent (RI-)4D-QSAR [21]. Although both methods 

gave similar statistics for the training set of 47  and  sub-
stituted D-glucose ligands used to build the models (r2 = 
0.85; q2 = 0.82 for both methods), when applied to the test 
set of 8 supplementary inhibitors assembled from reference 
[128], the RD-4D-QSAR approach clearly outperformed RI-
4D-QSAR for the inhibitors with structural characteristics 
deviating from those included in the training set. Information 
about the receptor geometry embedded in the QSAR pro-
vides insight into the conformational changes in the receptor 
due to a particular bound ligand. Some of the main ligand 
induced receptor conformation changes involved were: two 
possible conformations of Asn284 (acting as hydrogen bond 
donor/acceptor); reorientation of phosphate group of PLP 
depending on glucose inhibitor -substituents (3); reorienta-
tions of backbone carbonyl of His377 [21]. In a follow-up 
study, realignment and conformations of residues in the 
Ala673-Thr676 sequence, Leu136 and residues of the 280s 
and 380s loops in the RD-4D-QSAR models was also high-
lighted [24]. 

 A new RI-4D-QSAR approach called (Laboratório de 
Quimiometria Teórica e Aplicada) LQTA-QSAR has re-
cently been presented [129] and was applied to the same set 
of 47 catalytic site GPIs used in previous studies [21, 125, 
127]. Generating a conformational ensemble profile (CEP) 
and interaction energies as descriptors for each inhibitor 
from GROMACS [130] MD simulations of the unbound 
ligands, the 3D descriptors for the LQTA-QSAR model were 
calculated in a manner which then incorporates the main 
features of both CoMFA [100] and 4D-QSAR [131]. A 
model with statistics r2 = 0.81 and q2 = 0.72 for 12 selected 
variables was obtained. LQTA-QSAR can be found on the 
internet at http://lqta.iqm.unicamp.br 

 Verma and colleagues [132] developed a new 3D-QSAR 
approach called local indices for similarity analysis (LISA) 
and validated it on a set of previously assembled [133] 66 
glucose analogue GPIs. LISA estimates molecular similarity 
at the local level (local similarity index (LSI)), allowing to 
interpret the resulting models based on structural features. 
The LISA results were compared with CoMFA and CoMSIA 
models calculated with Sybyl 7.1 and gave comparable re-
sults/statistics. The output from LISA can be graphically 
displayed providing suggestions on structure modifications 
to improve inhibitor binding affinites. For calculating the 
local similarity at a certain point on the grid surrounding a 
molecule, the potential (e.g. electrostatic, steric, lipophilic, 
etc.) is compared to that of a reference molecule; the choice 
of reference is important, with the most active molecule rec-
ommended.  

 To summarize, despite the flexibility of the 280s loop, 
rigid receptor docking programs (flexible ligand) have been 
successfully applied to model binding of GPIs at the cata-
lytic site. This may, however, be dependent on the degree of 
the shift in the 280s loop and the variance in ligand induced 
conformational changes involved. This viewpoint can be 
considered consistent with Hopfinger’s findings using RD-
4D-QSAR models [21, 24], as just described. Larger ligands 
may result in larger shifts, but similar ligands may result in 
similar shifts in which case success may be expected. For 
example, multiple protein structure (MPS) docking using 
Glide 4.5 [67-69] was used to investigate the receptor struc-
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ture/conformation dependence on docking results for a set of 
seven N-acyl-N'- -D-glucopyranosyl ureas ligands (6) with a 
common NHCONHCO linker but varying shifts in the 280s 
loop residues depending on R substituents [14, 20]. Recep-
tors for docking were derived from the co-crystallized com-
plexes and MPS native- and cross-docking calculations of 
the ligands to their own and the other receptor structures 
performed, respectively. For reproducing the experimental 
binding structures and relative potencies, the single rigid 
receptor approximation was still reasonably valid using re-
ceptors prepared from the co-crystallized complexes with the 
bulkier R substituents which opened up the cavity in regions 
complementary to binding of the other ligands. It should also 
be mentioned that retaining the ordered crystallographic wa-
ter molecules common to all receptor-ligands complexes in 
the docking calculations helped to orientate the NHCON-
HCO moieties in their correct crystallographic positions.  

Inhibitor Site 

 Inhibitor site GPIs form interactions which are mainly 
hydrophobic with ligands sandwiched between Phe285 and 
Tyr613 by -stacking interactions. However, in addition to 
the -stacking, inhibitors can form direct or water mediated 
hydrogen bonding interactions to residues in the vicinity of 
the inhibitor site (c.f. Fig. (4)). To our knowledge, there are 
to date no reported modeling studies for binding at this site. 
Docking and MM methods currently struggle to accurately 
describe and score interactions involving -electrons. QSAR 
approaches may be most effective for modeling inhibitor 
sites GPIs, however, QM/MM methods are also an option 
with the stacking interactions described using QM methods. 
Calculation of the stacking energy is tedious requiring a 
combination of the most accurate QM procedures 
(CCSD(T)) and very large basis sets, ideally extrapolating to 
the complete basis set (CBS) limit. However, recently DFT 
functionals have been developed which can be applied to 
calculate stacking interactions at much less computational 
cost [134, 135].  

Allosteric Site 

 Using an iterative approach to allosteric site GPI design, 
an acyl urea derivative 8c with potent inhibition in both en-
zyme (HLGPa enzyme IC50 = 53 nM) and cell-based (rat 
hepatocytes IC50 = 380 nM) assays was obtained [26]. 8c 
was tested in Wistar rats and significantly reduced glucagon-
induced hyperlycemia. The acyl urea derivative 8a was used 
as the initial lead, identified by focused screening of 60 
compounds exhibiting pharmacophoric similarities to known 
GP inhibitors. Structural optimizations were guided by 3D 
pharmacophore modeling using Catalyst 4.7 (HypoGen 
module) [49] and by 3D structural information from select 
determined RMGPb-inhibitor crystal complexes (PDB codes 
1WUT (lead 8a [136]) and 2ATI (8b [26])). The 3D pharma-
cophore hypotheses were key to the choice and design of 
experiment, however, the limitations of a 3D pharmacophore 
model were overcome by derivation of supplementary 3D-
QSAR (CoMFA with Sybyl 6.9) models to more accurately 
account for electrostatic and hydrophobic interactions in 
quantitative affinity predictions (r2 = 0.92; q2 = 0.66); 3D-
QSAR in combination with the 3D pharmacophore, there-
fore, were used to guide the chemical optimizations.  

 Li and co-workers [137] have also modeled using QSAR 
the affinities of the same series of acyl ureas [26]. Effective 
QSAR models using structural descriptors encoding constitu-
tional, topological, geometrical, electrostatic and quantum 
chemical features were constructed using multiple linear 
regression (MLR) (r(training set) = 0.897; r(test set) = 0.88) 
and least squares support vector machines (LS-SVMs) 
(r(training set) = 0.957; r(test set) = 0.899). 

 A series of glucoconjugates of oleanic acid (OA) where 
OA and a glycoside are linked through either a triazole or 
ester linkage have been studied [51]. The most potent 
RMGPa inhibitor of this series 28 had an IC50 of 1.14 M 
compared to an IC50 of 14 M for the parent OA [27]. The 
possible binding site and binding modes of 28 were investi-
gated using Glide-XP [67-69] docking calculations. Docking 
calculations to the allosteric, inhibitor, catalytic and dimer 
interface sites were performed. The receptor for docking was 
prepared using the GPb-asiatic acid crystal structure (PDB 
ID: 2QN1[27]) with the GPb dimer generated using symme-
try operations. However, asiatic acid is bound at the allos-
teric site in the crystal, so that there may have been some 
bias in the rigid receptor docking calculations. 28 was pro-
posed to bind at the allosteric site exclusively, with the OA 
moeity positioned similar to asiatic acid in the 2QN1 crytal 
structure.  

 ICM docking [138] of the phenyl diacid 16 as a lead 
compound (R = NO2) to the AMP allosteric site followed by 
calculation of grid based hydrophobic/hydrophilic surfaces 
using the docking model revealed an unfilled hydrophobic 
region near the central phenyl ring A [45]; using this infor-
mation a series of napthyl diacid analogues (different R 
groups, napthyl group replacing phenyl ring A) with stronger 
binding affinities was designed. 

New Allosteric Site 

 For the new allosteric site, docking and 3D-QSAR calcu-
lations by different groups on a set of 25 indole-2-
carboxamide inhibitors [139] have been performed [42, 140], 
as described before [14]. Docking calculations using Auto-
Dock 3.0 [78, 79] were performed [42] using the receptor 
from the HLGPa – CP403700 (21) complex (PDB entry 
1EXV [59]) followed by derivation of more predictive 3D-
QSAR models using both CoMFA (r2 = 0.996; q2 = 0.697) 
and CoMSIA (r2 = 0.965; q2 = 0.622) methods from the 
alignment conformations of the docked ligands. However, it 
should be noted that good correlation (r2 = 0.710) between 
the predicted ligand relative binding affinities (docking 
scores) and the experimental activities (-logIC50) was also 
obtained directly using AutoDock 3.0; it was estimated that 
the average electrostatic contribution to ligand binding was 
just ~ 6.1%, consistent with mainly hydrophobic interactions 
of the site [59]. 

 Following the work on benzamide derivatives such as 17 
described above (Section II) [44], in a different approach to 
design of anti-diabetic drugs, dual-action hypoglycemic ben-
zamide derivatives which can both inhibit GP and activate 
glucokinase (GS) were investigated [141]. GS is a cytoplas-
mic enzyme whose activation is expected to improve glyce-
mic control by phosphorylating glucose in the liver promot-
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ing glycogen synthesis; in the pancreatic -cells this also 
triggers glucose-sensitive insulin release [142]. 29 inhibited 
HLGP with an IC50 of 8.96 M and activated GK with an 
EC50 of 1.87 M. Docking calculations were performed us-
ing Glide in XP mode [67-69] to both targets and binding 
interactions for the docked benzamide compounds at the GP 
new allosteric, dimer interface site were proposed. 

SECTION V: DESIGNING INHIBITORS WITH 

DRUG-LIKE PROPERTIES 

 Inhibitor design efforts are mainly focused on modifying 
ligand structure so as to improve its potency. However, in-
adequate absorption, distribution, metabolism (ADME) and 
toxicity (Tox) properties (ADMET) cause approximately 
50% of drug candidates to fail [143, 144]. It can be more 
efficient and cost effective therefore to monitor these proper-
ties at an earlier stage in the inhibitor/drug design process 
with ideally integration of experimental and in silico tech-
nologies proposed by some [145].  

 Recently, GlaxoSmithKline released a series of papers on 
the optimization of anthranilimide based GPIs which bind at 
the AMP site [28, 146-148]. The crystal structure of HLGPa 
with 11 was determined (PDB code 3DDS), and the culmina-
tion of SAR studies for optimization of both in vitro and in 
vivo properties was GPIs such as 12 with nM inhibition in 
both enzyme (GPa IC50 = 3 nM) and cell-based (IC50 = 145 
nM) assays, and which was also able to “acutely” lower glu-
cose levels in a diabetic mouse model (ob/ob). Interestingly, 
despite a set of GPIs having similar in vitro activities, 12 
would have been predicted by SAR to be the most active; in 
vivo 12 was found to be significantly more active. Follow-up 
publications will profile the pharmacokinetic properties of 
the compounds.  

 Using CP-320626 (15) as a benchmark for further design, 
Astellas Pharma Inc. [149] explored N-bicyclo-5-chloro-1H-
indole-2-carboxamide derivatives in the design of GPIs act-
ing at the dimer interface site. Exploiting the SAR data from 
the derivatives, they designed optically active compound 
30e  (R enantiomer) which had an IC50 of 20 nM for HLGPa 
inhibition (the IC50 of the corresponding S enantiomer 30e  
was 160 nM). 30e  inhibited glucose output from hepato-
cytes (IC50 of 690 nM) and hypoglycemic activity in diabetic 
db/db mice. It also revealed impressive pharmacokinetics in 
male SD rats with high oral bioavailability (F = 100%) and a 
long half-life (t1/2 = 12 h). With X having four fluorine at-
oms, the pharmacokinetic profile is consistent with fluorine 
assisting the drug metabolism properties [150]. A simple 
“docked” model based on the positions of 22 in complex 
with HLGPa molecules (PDB ID: 2ZB2) [41] was obtained.  

 Such thorough in vivo/pharmacokinetic (and even in vitro 
cell assay) analysis are beyond the resources of many work-
ing outside the pharmaceutical industry. The relatively few 
recent publications highlight this [28, 41, 55, 149, 151]. 
However, ADMET property predictions offers a viable alter-
native towards the goal of drug-like inhibitor design [152-
154] and there are a number of free resources available to do 
so [155, 156]. A recent review highlights some of the avail-
able software for ligand toxicity predictions [157]. Modules 
such as QikProp [67] (ADME property predictions) from 

Schrödinger are also available through the drug discovery 
commercial sofware packages. Using such packages, fulfill-
ment, or not, of simple rules such as Lipinski’s ‘rule of five’ 
[158, 159] and Veber et al.’s [160] suggested properties for 
oral bioavailability can help monitor the drug-likeness of 
GPIs at an earlier stage in the drug design process.  

 Descriptors used to model pharmacokinetic properties are 
also involved in receptor-ligand binding properties. There-
fore, for a set of 23 catalytic site GPIs, Zamora and co-
workers [161] were able to obtain a statistically significant 
model for binding affinity prediction (r2 = 0.94; q2 = 0.89) by 
integrated use of the VolSurf 2.0 [162, 163] descriptors 
based on the GRID [164] interaction fields which allowed 
simulataneous modeling of both protein-ligand binding af-
finities and ligand pharmacokinetic properties. The method, 
however, is alignment independent and hence chemical 
modifications can not be suggested for inhibitor optimization 
as is possible with standard 3D-QSAR.  

 Solubility properties of GPIs can lead to failure of inhibi-
tors at a very early stage in the development process. For 
example, a series of thiazolidine-2,4-diones attached to 2,3-
dihydrobenzo[1,4]dioxin ring systems was prepared [165] 
but because of solubility problems only a few of the final 
series and the intermediates could be assayed with GP. Sim-
ple solubility (log P) calculations [166, 167] can help prevent 
these problems prior to undertaking the time-consuming ex-
periments including the initial synthesis. 

 Finally, matched molecular pair analysis (MMPA) [168] 
can be used to integrate potency with physiochemical prop-
erties, with Birch and co-workers [169] demonstrating how 
MMPA can be used as a predictive tool of activity and phys-
icoproperties of GPIs which are linked to specific structural 
changes. Using MMPA, the difference in a property can be 
predicted more accurately than the property itself, leading to 
an analogy to be drawn with the FEP method. 

SECTION VI: CONCLUDING REMARKS  

 The role of computation in serious current-day SBDD is 
now well established, with the development of new algo-
rithms and improvements in existing software creating even 
more powerful tools. Adequate modeling of, for example, 
receptor flexibility as highlighted in this paper remains an 
on-going challenge in SBDD, but its incorporation in dock-
ing is receiving much recent attention [82, 170-173] and has 
been already successfully included in RD-4D-QSAR models 
for binding of GP catalytic site inhibitors [21, 24]. The de-
sign of GPIs exploiting computational methods have mainly 
focused on analogues of glucose binding at the catalytic site, 
for which both docking and QSAR methods are proving very 
effective. Other GP binding sites have been less explored 
and predominantly studied using QSAR models, with the -
stacking effects seen at the allosteric and inhibitor site more 
difficult to accurately describe using standard docking pro-
grams. 

 Glide [67-69] (catalytic site [18, 20, 22, 23, 117], allos-
teric [51] and new allosteric site [141]), GOLD [76, 77] 
(catalytic site [117]), AutoDock [78-80] (new allosteric site 
[42, 44]), LUDI [104-106] (catalytic site [42, 102, 103]) and 
ICM [138](allosteric site [45]) docking programs have all 
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been applied in GPI binding studies. There are a number of 
insightful publications comparing the performance of differ-
ent docking programs which may be of interest to the GP 
modeler (for references, see [174]). For example, despite GP 
not being included as a target in a detailed comparison of the 
performance of Glide [67-69], GOLD [76, 77] and ICM 
[138] docking programs for other target proteins [72], Glide 
was found to perform more consistently with respect to di-
versity of binding sites; the performance of GOLD and ICM 
was more binding site dependent and particularly poorer for 
hydrophobic binding sites. Meanwhile, ADMET property 
predictions have not yet become mainstream in modern day 
GPI design, which should be a consideration given their like-
lihood to lead to eventual drug candidate failure. 
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ABBREVIATIONS 

GP = glycogen phosphorylase 

GPI = glycogen phosphorylase inhibitor 

RMGP = rabbit muscle glycogen phosphorylase 

HLGP = human liver glycogen phosphorylase 

PLP = pyridoxal-5’-phosphate 

glucose = -D-glucose 

Glc-1-P = -D-glucose 1-phosphate 

Glc-6-P = -D-glucose 6-phosphate 

AMP = adenosine monophosphate 

ATP = adenosine triphosphate 

IMP = inosine monophosphate 

UDP = uridine 5’-diphosphate 

NADH = nicotinamide adenine dinucleotide 

(Q)SAR = (quantatative) structure activity relationship 

MM = molecular mechanics 

QM = quantum mechanics 

QM/MM = quantum mechanics/ molecular mechanics 

DFT = density functional theory 

MM-GBSA = molecular mechanics/ generalized Born 
surface area 

MM-PBSA = molecular mechanics/ Poisson Boltzmann 
surface area 

CoMFA = Comparative Molecular Field Analysis 

CoMSIA = Comparative Molecular Similarity Indices 
Analysis 

CCSD(T) = Coupled Cluster Single Double (perturbat-
ive Triple) 
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